
A Model for Assessing the Liability of Seemingly Correct Software

Je�rey M. Voas� Larry K. Voasy Keith W. Millerz

Abstract

Current research on software reliability does not lend itself to quantitatively assessing the risk posed by

a piece of life-critical software. Black-box software reliability models are too general and make too many

assumptions to be applied con�dently to assessing the risk of life-critical software. We present a model

for assessing the risk caused by a piece of software; this model combines software testing results and

Hamlet's probable correctness model [2]. We show how this model can assess software risk for those

who insure against a loss that can occur if life-critical software fails.

Keywords

Software reliability, probable correctness, probability of failure, software safety, fault, insurance, risk

assessment, failure, peril, hazard.

1 Introduction

Software liability issues can be characterized by two questions: (1) who is liable when a piece of software

fails catastrophically and (2) how great is their liability? The questions of liability are legal and ethical

quandaries, but they also introduce technical questions. This paper is concerned with quantifying the

�nancial risk associated with a piece of software, a technical question closely associated with the second

question above.

If a piece of software never fails, then questions of liability do not arise; but determining a priori

that software will never fail is, in general, impossible. In order to quantify the �nancial risk of software,

we need numbers that describe the probability that the software will fail catastrophically and the cost

of the resulting catastrophe. In this paper we will de�ne a software failure as when software does not

perform as speci�ed and this aberrant behavior threatens life. We will use the probable correctness

model introduced by Hamlet [2] to quantify the probability of failure, and we will show how this �gure

can be combined with numbers estimating the cost of such failures. We will not describe how insurance

underwriters estimate the cost of a catastrophe.

2 How Insurance Companies Assess Risk

Risk can be divided into two types: speculative and pure. Speculative risk can either result in a loss or

a pro�t. An example is buying company stock. With pure risk the only potential consequence is loss.

�Supported by a National Research Council NASA-Langley Resident Research Associateship. Author's correspondence

address is: Reliable Software Technologies Corporation, Penthouse Suite, 1001 North Highland Street, Arlington, VA

22201, (703) 276-1219, FAX (703) 527-0200.
yNorthwestern Mutual Life Insurance Company.
zSupported by NASA-Langley Research Center Grant NAG-1-884. Author's correspondence address is: Dept. of

Computer Science, College of William & Mary, Williamsburg, VA 23185, (804) 221-3464.

1

An example is automobile collision insurance.

Insurance gives companies that produce goods and services an opportunity to order their business

a�airs so that a certain cost (premiums) are substituted for an uncertain cost (potentially disastrous

loss of unacceptable magnitude). The ability to acquire insurance permits security and thus continued

economic activity in an environment containing risk. Failure to substitute risk via the payment of

premiums means retention of the potential adverse consequences. Few prudent businesses are willing

to assume such a risk.

But what do insurance companies (risk assumers) need in order to o�er the security of insurance?

First, they seek to quantify the risk. Risk quanti�cation evaluates uncertainties and places a dollar

amount on the risk to be assumed. Perils are the cause of pure risk. Examples of perils include

oods, �re, and disease. Underwriting inquirers also look beyond the peril to its cause (hazards) which

precipitate the resulting loss. Examples of hazards include bad weather patterns for the peril of
ood,

poor electrical wiring for the peril of �re, and poor health habits for the peril of disease. Thus the

providers of insurance need tools to measure the risk/hazards so they can mathematically calculate

premiums. Without such tools, the insurance provider cannot prudently assume risk and accurately

set rates.

The early writers of marine insurance estimated the risks of ship and cargo loss by taking into

account weather patterns for speci�c routes at speci�c times, the patterns of known pirate activity,

and the success and failures of the crew. Underwriter accuracy in assigning a premium/risk ratio is

enhanced if a large number base of previous shipping experiences is available.

Suppose that an underwriter assigns risk numbers from 1 to 10 (smallest risk to greatest risk) on

each of the assumed equal categories of the perils: weather, pirates, previous crew/ship experiences.

For example, assume that a winter voyage calls for a weather rating of 9, pirate activity calls for a 2,

and the crew/ship have an excellent rating of 1. In this case, 12 is the combined risk out of a possible

total of 30. A premium of 12/30 of the insured value would be assessed as well as some value for

underwriter pro�t.

The relatively high premium for this proposed trip could be justi�ed if the shipper anticipates

in
ated pro�ts due to a winter delivery. However the shipper might decide to sail later when the

weather peril decreases. A �nal option is for the shipper to sail without protection and retain all

risks. Many decisions were involved in these crude tools of early risk management. But the concept of

seeking data to turn total uncertainty into reasonable certainty is still the goal of those who seek and

sell insurance.

In summary, any technique or tool that enables an insurer to more accurately assess a risk makes

cost e�ective insurance more available. The next section describes such a tool for businesses who want

to insure against catastrophic software failure.

3 uantifying Software Risk

Insurance companies can \play the percentages" best when they have extensive prior experience that

is directly relevant to a certain risk. Prior knowledge allows them to predict with reasonably high

con�dence the likelihood of a loss.

Software risk is a pure risk: the software is expected to work correctly; the only \surprise" is the

unwelcome surprise of a software failure. Software is a relatively new product, particularly software that

could be associated with a loss-of-life. There has not been a lengthy historical time frame over which

software systems can be evaluated to accumulate prior knowledge. And each software system is unique;

generalized risk analysis from previous systems will not necessarily apply to a current project. This is

a drawback of black-box software reliability models based on error histories: they often overgeneralize

based on the results from previous experiences.

2

Also, critical software systems are generally one-of-a-kind; there may be many copies, but they are

all identical. Statistics such as percentage of defective parts out of a large lot of parts do not apply

here. N-version programming was an idea explored in the 1980's to show that multiple implementations

of a speci�cation produced a more reliable overall system. The results from experimentation using

multiple implementations have been disappointing; N-version programming is based on the assumption

that software failures occur in di�erent versions independently, and this assumptions has not been

substantiated [3].

To assess software risk, we need to quantify the reliability of the software. There are many software

reliability models [7]; many of these are error history models, which estimate future software failures

by tracking the history of errors discovered previously. Di�erent error history models often assign

di�erent reliability estimates to the same set of data and it is inconclusive as to which model is the

most accurate for a given piece of software. Also, error history models do not work well for very high

reliability estimates. In short, error history reliability models are of limited use when insurers wish to

assess the risk of critical/ultra-reliable software. In the rest of this section we introduce a reliability

formula based on black-box testing and probability theory; we contend this this formula embodies a

theoretically defensible and utilitarian method for producing consistent estimates of software reliability.

3.1 Probable Correctness and Software eliability

x3.1 discusses a technique that estimates a maximum failure rate for a piece of software; using this

technique, we establish a value
̂, which acts as a upper bound on the likely probability of failure for

this software. This technique requires that the user know what the distribution of inputs will be for

the software. The user executes random black-box tests drawn from this distribution, and determines

for each test whether or not the software's output constitutes a failure. This determination is the most

expensive and error-prone part of most testing e�orts. If an automated test oracle is available to give

a correct answer, extensive testing becomes possible; however, such oracles are rare. (Some examples

do exist; for example, if a new program is a re-implementation that is supposed to exactly mimic an

old program, the old program can function as an automated oracle.)

After tests are executed without revealing any faults, the user can set a con�dence level , and

the formula given in equation 1 on page 5 can be used to calculate
̂ such that with con�dence we

can state that the actual probability of failure of a single execution is
̂ [2].

Randomly generated black-box testing is an established method of estimating software reliability

[8, 13]. Unfortunately, as software applications have required higher and higher reliabilities, practical

limitations of black-box testing have become increasingly problematic. These practical problems are

particularly acute in life-critical applications, where requirements of 10�7 failures per hour of system

reliability translate into a required probability of failure (po) of perhaps 10�9 or less for each indi-

vidual execution of the software []. In the rest of this paper we will refer to software with reliability

requirements of this magnitude as ultra-reliable software.

The po of a program is conditioned on an input distribution. An input distribution is a probability

density function that describes for each legal input the probability that the input will occur during the

use of the software. iven an input distribution, the po is the probability that a random input drawn

from that distribution will cause the program to output an incorrect response to that input.

Even if ultra-reliable software can be in theory achieved, we cannot comfortably depend this achieve-

ment unless we can establish that reliability in a convincing, systematic, and scienti�c manner. As

pointed out in [], black-box testing is impractical for establishing these very high reliabilities. In gen-

eral, by executing random black-box tests, we can estimate a probability of failure in the neighborhood

of 1 when none of the tests reveals a failure [5]. If the required reliability is in the ultra-reliable range,

random black-box testing would require decades of testing before it could establish a reasonable con-

�dence in this reliability, even with the most sophisticated hardware. Based on these impracticalities,

3

some researchers contend that very high reliabilities cannot be quanti�ed using statistical techniques

[1].

Hamlet has derived an equation to determine what he calls \probable correctness" [2]. When

tests have been executed and no failures have occurred, then:

= Prob(
̂) = 1� (1�
̂)T (1)

where is the true po , 0
̂ 1, and is the con�dence that
̂. 1 We can rearrange this

formula to:

̂ = 1� (1�)(1 T) (2)

With this formula, we have an upper bound on an estimate of the po in
̂. This provides us with the

maximum risk that we take when we execute the software a single time.

Persons interested in the results of equation 2 include software developers, software testers, and

persons insuring against the failure of the software system. The developer gains a feeling for how

con�dent he is currently given the degree of testing of the software project. The tester gains con�dence

in the software which the testing has produced to date, and the tester can use equation 2 to �nd out

much additional successful testing will be needed until the po of the software is less than some preset

threshold with some . An insurer gains an ability to assess the risk that a piece of software provides.

For the insurer, x3.2 shows how to apply equation 2 and determine an insurance premium against

software failure.

Equation 2 presents an interesting dilemma. While is �xed and increases,
̂ decreases; this

translates into a decreased risk. But as the risk decreases, the likelihood of ever revealing the existence

of a fault without enormous amounts of additional testing also decreases. What this means is that

as testing continues without observing failures, we learn that if faults are hiding in the code, we are

unlikely to catch them during testing. Faults that hide during testing are a nightmare for those who

develop life-critical code.

3. Probable Correctness, Software iability, and ns rance

In order to assign a premium, insurance companies use a simple formula where represents the max-

imum �nancial loss caused by some catastrophic event being insured against and represents the

probability of that event occurring. Then the premium assessed is simply

= (�) Pro�t. (3)

When we apply this to software and use the
̂ derived from equation 1 and successful tests, this

becomes:

= (� [1� (1�)(1 T)]) Pro�t. ()

Table 1 shows how various values for and a�ect when is set at 1,000,000. Note that the

premium (without Pro�t) shown in Table 1 is the premium that should be assessed for a single execution

of the software that has been based on the previous amount of successful testing and the preset

con�dence . Thus we must scale according to the expected amount of use of the software during

the time period of the insurance. For instance, if during the period of the insurance, the software will

be executed times, we will adjust the cost of on the th (1) execution to be:

k = (� [1� (1�)(1 (T (k�1)))]) Pro�t. (5)

1Hamlet calls a measure of probable correctness, but it would be called a con dence if the e uations were cast in a

traditional hypothesis test.

� Pro�t 1� (1�)(1 T) =
̂

500,000 1,000,000 0.999 10 0. 99

7,11 1,000,000 0.999 100 0.0 7

,891 1,000,000 0.999 1000 0.00 89

7 1,000,000 0.999 1,000,000 0.00000 9

0.70 1,000,000 0.999 10,000,000 0.000000 9

0.07 1,000,000 0.999 100,000,000 0.0000000 9

3 9,003 1,000,000 0.99 10 0.3 9

5,00 1,000,000 0.99 100 0.0 5

,590 1,000,000 0.99 1000 0.00 59

5 1,000,000 0.99 1,000,000 0.00000 0

258,0 1,000,000 0.95 10 0.258

29, 98 1,000,000 0.95 100 0.0295

2,99 1,000,000 0.95 1000 0.00299

3 1,000,000 0.95 1,000,000 0.00000299

Table 1: Sample values obtained using Equation .

For all executions, will be:

=
1

[(� [1� (1�)(1 (T (�1)))]) Pro�t.] ()

We assume that if the software ever fails during the insured period, execution of the software will

immediately cease. This means that the maximum loss for the insurer is .

As can be seen in Table 1, virtually no one could ever a�ord the cost of insuring software for a

single execution that has only been tested 10 times. Furthermore, the cost of insuring software for

multiple executions that has received such minimal testing quickly surpasses in equation , making

such a premium assessment useless. To reduce the premium, additional testing must be performed.

The trade-o� between testing costs and premium can be optimized.

As shown in Table 1, when we move from 99 con�dence to 95 con�dence, the insurer accepts

more of the risk himself, and by demanding less con�dence from the successful testing, is able to charge

a lower premium. If the insurer wishes to charge a lower premium with a lower con�dence, then the

insurer must observe more successful tests. This is the trade-o� between con�dence and testing: when

con�dence is diminished, the number of successful tests must increase, or else the premium will increase.

When con�dence and number of successful tests increase, then the premium can decrease.

Conc uding Remarks and uture Researc

This paper has shown how the probable correctness model can be used to estimate the maximal po

of a piece of software given a con�dence for this estimate and successful executions. By having an

estimate of the maximal po , we have an assessment of the maximum risk that we estimate the software

poses. With an upper bound estimate of the risk, we can begin to explore how to insure against the

potentially disastrous consequences of software failure. The upper bound allows us to calculate an

insurance premium against software failure, given that the maximum insurance protection is preset.

We think that issuers of liability insurance can better assess the premiums they charge for software

liability insurance by using the fact that a piece of software is known to have not failed. By combining

this fact with a con�dence, an upper bound on the risk is attainable via a simple equation. This is

bene�cial for both buyers and sellers of software liability insurance.

5

As shown in Table 1, the costs of insurance are prohibitive for software that is frequently executed,

say one thousand times per day. Even in the scenario where we tested one million times successfully

with 95 con�dence, the premium would be at least at least 3,000 per day before pro�t is calculated.

This cost re
ects the di culty of assessing ultra-reliability using statistical methods [1]. The weakness

of black-box testing is that it is ine�ective against failures that occur very infrequently.

Although black-box testing is thwarted by infrequent failures, such testing in concert with other

analysis may still allow more precise reliability assessment. Testability analysis [12, 9, 10, 11] is a new

technique that attempts to quantify the likelihood that faults can hide from testing. By combining

software testability information with successful software testing information, we expect to be able to

substantially decrease the premiums that we have shown in this paper for software systems that show

a tendency to reveal faults during testability analysis. Research into the application of testability

analysis to liability analysis is ongoing.

References

[1] R. B . F . The infeasibility of experimental quanti�cation of life-critical software

reliability. In Proceedings of ' : oftware for Critical ystems, pages {7 , New

rleans, A., December 1991.

[2] R . H . Probable orrectness Theory. nformation Processing etters, pages 17{25,

April 1987.

[3] . N . . An experimental evaluation of the assumptions of in-

dependence in multiversion programming, rans. on oftware ngineering, SE-12:9 {109,

an. 198 .

[] D. R. M . Making Statistical Inferences About Software Reliability. Technical report, NASA

ontractor Report 197, December 1988.

[5] . M , . M , R. N , S. P , D. N , B. M , . . Estimating the

Probability of Failure When Testing Reveals No Failures. rans. on oftware ngineering,

18(1):33{ , anuary 1992.

[] I. P . Software failure: counting up the risks. cience ews, 1 0(2):1 0{1 1, December

1991.

[7] . . R F. B. B . Software Reliability - Status and Perspectives.

ransactions on oftware ngineering, SE-8:5 3{371, uly 1982.

[8] T. A. T , M. , E. . N . oftware eliability(TRW Series on Software Tech-

nology, ol. 2). New ork: North Holland, 1978.

[9] . , . M , . M . Predicting Where Faults an Hide From Testing.

oftware, 8(2), March 1991.

[10] . . M . The Revealing Power of a Test ase. . of oftware esting eri�cation

and eliability, To appear in 1992.

[11] . . ynamic ailure odel for Performing Propagation and nfection nalysis on Com-

puter Programs. PhD thesis, ollege of William and Mary in irginia, March 1990.

[12] . . : A Dynamic Failure-Based Technique. rans. on oftware ngineering, To

appear August, 1992.

[13] S. N. W E. . W . An extended domain-based model of software reliability.

rans. on oftware ngineering, 1 (10):1512{152 , ctober 1988.

7

